sync: Auto-sync from ACG-M-L5090 at 2026-01-22 19:22:24

Synced files:
- Grepai optimization documentation
- Ollama Assistant MCP server implementation
- Session logs and context updates

Machine: ACG-M-L5090
Timestamp: 2026-01-22 19:22:24

Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
This commit is contained in:
2026-01-22 19:22:54 -07:00
parent 63ab144c8f
commit eca8fe820e
7 changed files with 1782 additions and 0 deletions

View File

@@ -0,0 +1,345 @@
# Ollama MCP Server Installation Guide
Follow these steps to set up local AI assistance for Claude Code.
---
## Step 1: Install Ollama
**Option A: Using winget (Recommended)**
```powershell
winget install Ollama.Ollama
```
**Option B: Manual Download**
1. Go to https://ollama.ai/download
2. Download the Windows installer
3. Run the installer
**Verify Installation:**
```powershell
ollama --version
```
Expected output: `ollama version is X.Y.Z`
---
## Step 2: Start Ollama Server
**Start the server:**
```powershell
ollama serve
```
Leave this terminal open - Ollama needs to run in the background.
**Tip:** Ollama usually starts automatically after installation. Check system tray for Ollama icon.
---
## Step 3: Pull a Model
**Open a NEW terminal** and pull a model:
**Recommended for most users:**
```powershell
ollama pull llama3.1:8b
```
Size: 4.7GB | Speed: Fast | Quality: Good
**Best for code:**
```powershell
ollama pull qwen2.5-coder:7b
```
Size: 4.7GB | Speed: Fast | Quality: Excellent for code
**Alternative options:**
```powershell
# Faster, smaller
ollama pull mistral:7b # 4.1GB
# Better quality, larger
ollama pull llama3.1:70b # 40GB (requires good GPU)
# Code-focused
ollama pull codellama:13b # 7.4GB
```
**Verify model is available:**
```powershell
ollama list
```
---
## Step 4: Test Ollama
```powershell
ollama run llama3.1:8b "Explain what MCP is in one sentence"
```
Expected: You should get a response from the model.
Press `Ctrl+D` or type `/bye` to exit the chat.
---
## Step 5: Setup MCP Server
**Run the setup script:**
```powershell
cd D:\ClaudeTools\mcp-servers\ollama-assistant
.\setup.ps1
```
This will:
- Create Python virtual environment
- Install MCP dependencies (mcp, httpx)
- Check Ollama installation
- Verify everything is configured
**Expected output:**
```
[OK] Python installed
[OK] Virtual environment created
[OK] Dependencies installed
[OK] Ollama installed
[OK] Ollama server is running
[OK] Found compatible models
Setup Complete!
```
---
## Step 6: Configure Claude Code
The `.mcp.json` file has already been updated with the Ollama configuration.
**Verify configuration:**
```powershell
cat D:\ClaudeTools\.mcp.json
```
You should see an `ollama-assistant` entry.
---
## Step 7: Restart Claude Code
**IMPORTANT:** You must completely restart Claude Code for MCP changes to take effect.
1. Close Claude Code completely
2. Reopen Claude Code
3. Navigate to D:\ClaudeTools directory
---
## Step 8: Test Integration
Try these commands in Claude Code:
**Test 1: Check status**
```
Use the ollama_status tool to check if Ollama is running
```
**Test 2: Ask a question**
```
Use ask_ollama to ask: "What is the fastest sorting algorithm?"
```
**Test 3: Analyze code**
```
Use analyze_code_local to review this Python function for bugs:
def divide(a, b):
return a / b
```
---
## Troubleshooting
### Ollama Not Running
**Error:** `Cannot connect to Ollama at http://localhost:11434`
**Fix:**
```powershell
# Start Ollama
ollama serve
# Or check if it's already running
netstat -ano | findstr :11434
```
### Model Not Found
**Error:** `Model 'llama3.1:8b' not found`
**Fix:**
```powershell
# Pull the model
ollama pull llama3.1:8b
# Verify it's installed
ollama list
```
### Python Virtual Environment Issues
**Error:** `python: command not found`
**Fix:**
1. Install Python 3.8+ from python.org
2. Add Python to PATH
3. Rerun setup.ps1
### MCP Server Not Loading
**Check Claude Code logs:**
```powershell
# Look for MCP-related errors
# Logs are typically in: %APPDATA%\Claude\logs\
```
**Verify Python path:**
```powershell
D:\ClaudeTools\mcp-servers\ollama-assistant\venv\Scripts\python.exe --version
```
### Port 11434 Already in Use
**Error:** `Port 11434 is already in use`
**Fix:**
```powershell
# Find what's using the port
netstat -ano | findstr :11434
# Kill the process (replace PID)
taskkill /F /PID <PID>
# Restart Ollama
ollama serve
```
---
## Performance Tips
### GPU Acceleration
**Ollama automatically uses your GPU if available (NVIDIA/AMD).**
**Check GPU usage:**
```powershell
# NVIDIA
nvidia-smi
# AMD
# Check Task Manager > Performance > GPU
```
### CPU Performance
If using CPU only:
- Smaller models (7b-8b) work better
- Expect 2-5 tokens/second
- Close other applications for better performance
### Faster Response Times
```powershell
# Use smaller models for speed
ollama pull mistral:7b
# Or quantized versions (smaller, faster)
ollama pull llama3.1:8b-q4_0
```
---
## Usage Examples
### Example 1: Private Code Review
```
I have some proprietary code I don't want to send to external APIs.
Can you use the local Ollama model to review it for security issues?
[Paste code]
```
Claude will use `analyze_code_local` to review locally.
### Example 2: Large File Summary
```
Summarize this 50,000 line log file using the local model to avoid API costs.
[Paste content]
```
Claude will use `summarize_large_file` locally.
### Example 3: Offline Development
```
I'm offline - can you still help with this code?
```
Claude will delegate to local Ollama model automatically.
---
## What Models to Use When
| Task | Best Model | Why |
|------|-----------|-----|
| Code review | qwen2.5-coder:7b | Trained specifically for code |
| Code generation | codellama:13b | Best code completion |
| General questions | llama3.1:8b | Balanced performance |
| Speed priority | mistral:7b | Fastest responses |
| Quality priority | llama3.1:70b | Best reasoning (needs GPU) |
---
## Uninstall
To remove the Ollama MCP server:
1. **Remove from `.mcp.json`:**
Delete the `ollama-assistant` entry
2. **Delete files:**
```powershell
Remove-Item -Recurse D:\ClaudeTools\mcp-servers\ollama-assistant
```
3. **Uninstall Ollama (optional):**
```powershell
winget uninstall Ollama.Ollama
```
4. **Restart Claude Code**
---
## Next Steps
Once installed:
1. Try asking me to use local Ollama for tasks
2. I'll automatically delegate when appropriate:
- Privacy-sensitive code
- Large files
- Offline work
- Cost optimization
The integration is transparent - you can work normally and I'll decide when to use local vs. cloud AI.
---
**Status:** Ready to install
**Estimated Setup Time:** 10-15 minutes (including model download)
**Disk Space Required:** ~5-10GB (for models)