--- name: "Code Review Sequential Thinking Testing" description: "Test scenarios for Code Review Agent with Sequential Thinking MCP" --- # Code Review Agent - Sequential Thinking Testing This document demonstrates the enhanced Code Review Agent with Sequential Thinking MCP integration. **Last Updated:** 2026-01-17 --- ## Test Scenarios ### Scenario 1: Simple Issue (No ST Required) **Code Submitted:** ```python def calculate_tax(amount): return amount * 0.08 ``` **Issues:** - Missing type hints - No docstring - Magic number (0.08) **Expected Behavior:** Code reviewer fixes directly, approves **ST Triggered:** NO (simple, first review) **Review Result:** ```python def calculate_tax(amount: Decimal) -> Decimal: """Calculate sales tax on given amount. Args: amount: Pre-tax amount Returns: Tax amount (8% rate) """ TAX_RATE = Decimal("0.08") return amount * TAX_RATE ``` **Status:** APPROVED (after minor fixes) --- ### Scenario 2: First Rejection (Standard Escalation) **Code Submitted:** ```python def login(username, password): user = db.query(f"SELECT * FROM users WHERE name='{username}'") if user and user.password == password: return True return False ``` **Issues:** - SQL injection vulnerability - Plaintext password comparison **Expected Behavior:** Standard escalation format **ST Triggered:** NO (only 1 critical issue per category, first review) **Review Result:** ```markdown ## Code Review - Requires Revision **Specification Compliance:** FAIL **Security:** CRITICAL ISSUES ### CRITICAL: SQL Injection - **Location:** login function, line 2 - **Problem:** String interpolation in SQL query - **Impact:** Database compromise possible - **Required Fix:** Use parameterized queries ### CRITICAL: Plaintext Password - **Location:** login function, line 3 - **Problem:** Direct password comparison - **Impact:** Passwords should be hashed (bcrypt) - **Required Fix:** Hash passwords, use secure comparison **Checklist:** - [ ] Parameterized SQL queries - [ ] Bcrypt password hashing ``` **Status:** ESCALATED (standard format) --- ### Scenario 3: Second Rejection (ST TRIGGERED) **Code Resubmitted After Fix:** ```python def login(username, password): user = db.query("SELECT * FROM users WHERE name=?", username) if user and bcrypt.checkpw(password, user.password): session['user'] = username return True return False ``` **Issues:** - Session management insecure (no token, no expiry) - No rate limiting (brute force possible) - Username might not exist (error handling) **Expected Behavior:** ST TRIGGERED (2nd rejection) **ST Analysis:** ``` Thought 1: This is the second rejection. First was SQL injection + plaintext passwords. Now session management issues. Pattern: treating authentication as simple data retrieval rather than security-critical component. Thought 2: Root cause is mental model problem. Coding Agent fixing surface issues but missing the security-first mindset required for authentication. Thought 3: Need comprehensive authentication pattern, not incremental fixes. Thought 4: Should provide complete example with security threat model explanation to shift mental model. Thought 5: Include: parameterized queries (done), bcrypt (done), session tokens (missing), rate limiting (missing), input validation (missing), timing-safe comparison (missing). Thought 6: Enhanced escalation format with educational context needed. ``` **Review Result:** ```markdown ## Code Review - Requires Revision (Complex Issues Analyzed) **Review Iteration:** 2 (USING SEQUENTIAL THINKING ANALYSIS) **Reason:** 2nd rejection - pattern indicates mental model mismatch ## Root Cause Analysis **Surface Issues:** - Insecure session management - No brute force protection - Missing input validation **Root Cause:** Authentication is being treated as a CRUD operation (create/read user) rather than a security-critical component with an active threat model. **Why Previous Attempts Failed:** Incremental security fixes without understanding the holistic security requirements for authentication systems. ## Comprehensive Solution Strategy **Recommended Approach:** Implement complete authentication system with defense-in-depth: - JWT tokens (not simple sessions) - Rate limiting (prevent brute force) - Input validation (prevent injection beyond SQL) - Timing-safe comparison (prevent timing attacks) - Audit logging (security monitoring) **Why This Approach:** - Addresses all OWASP authentication risks - Provides defense-in-depth - Industry standard pattern **Complete Example:** ```python from datetime import datetime, timedelta import jwt import bcrypt from functools import wraps from typing import Optional # Rate limiting decorator def rate_limit(max_attempts=5, window_minutes=15): attempts = {} def decorator(func): @wraps(func) def wrapper(username, *args, **kwargs): now = datetime.now() if username in attempts: count, first = attempts[username] if (now - first) < timedelta(minutes=window_minutes): if count >= max_attempts: raise Exception("Rate limit exceeded") attempts[username] = (count + 1, first) else: attempts[username] = (1, now) else: attempts[username] = (1, now) return func(username, *args, **kwargs) return wrapper return decorator @rate_limit(max_attempts=5, window_minutes=15) def login(username: str, password: str) -> Optional[str]: """Authenticate user and return JWT token. Security measures: - Parameterized queries (SQL injection prevention) - Bcrypt password hashing (credential theft protection) - Rate limiting (brute force prevention) - Input validation (injection prevention) - JWT tokens (secure session management) - Timing-safe comparison (timing attack prevention) Args: username: User's username (validated) password: User's plaintext password Returns: JWT token string if authenticated, None otherwise Raises: ValueError: If inputs are invalid Exception: If rate limit exceeded """ # Input validation if not username or not isinstance(username, str): raise ValueError("Invalid username") if len(username) > 50: raise ValueError("Username too long") if not password or len(password) < 8: raise ValueError("Invalid password") # Parameterized query (SQL injection prevention) user = db.query( "SELECT id, username, password_hash FROM users WHERE username = ?", params=(username,) ) # Timing-safe comparison to prevent timing attacks if not user: # Run bcrypt anyway to prevent timing leak bcrypt.checkpw(b"dummy", bcrypt.hashpw(b"dummy", bcrypt.gensalt())) return None # Bcrypt comparison (secure password verification) if not bcrypt.checkpw(password.encode(), user.password_hash): return None # Generate JWT token (secure session management) token = jwt.encode({ 'user_id': user.id, 'username': user.username, 'exp': datetime.utcnow() + timedelta(hours=24), 'iat': datetime.utcnow() }, SECRET_KEY, algorithm='HS256') # Audit logging (security monitoring) audit_log.info(f"User {username} logged in", extra={ 'user_id': user.id, 'ip': request.remote_addr, 'timestamp': datetime.utcnow() }) return token ``` ## Educational Context **Key Concept: Defense in Depth** Authentication is an attack surface. Every decision has security implications. Multiple layers of defense ensure that if one fails, others protect the system. **Security Threat Model for Authentication:** 1. SQL Injection → Parameterized queries 2. Credential theft → Password hashing 3. Brute force → Rate limiting 4. Session hijacking → JWT with expiry 5. Timing attacks → Constant-time comparison 6. Injection attacks → Input validation 7. Forensics → Audit logging **Why It Matters:** Authentication failures lead to complete system compromise. A single vulnerability can bypass all other security measures. **Reference Patterns:** - OWASP Authentication Cheatsheet - JWT Best Practices - Bcrypt/Argon2 for password hashing ``` **Status:** ESCALATED (enhanced format with ST analysis) --- ### Scenario 4: Complex Multiple Issues (ST TRIGGERED) **Code Submitted:** ```python def process_orders(user_id): orders = [] user = db.query(f"SELECT * FROM users WHERE id={user_id}") for order in db.query("SELECT * FROM orders"): if order.user_id == user_id: items = [] for item in db.query("SELECT * FROM items"): if item.order_id == order.id: items.append(item) orders.append({'order': order, 'items': items}) return orders ``` **Issues:** - SQL injection (user_id) - N+1 query problem (orders loop) - N+1 query problem (items loop) - Missing indexes implied - Inefficient filtering in Python - No error handling - No type hints **Expected Behavior:** ST TRIGGERED (3+ critical issues, interrelated) **ST Analysis:** ``` Thought 1: Multiple issues: SQL injection + N+1 queries (2 levels) + inefficient filtering. These are interrelated - fixing one affects others. Thought 2: Root cause: fundamental misunderstanding of database query optimization. Treating database like in-memory collection. Thought 3: Can't fix incrementally. Need to teach JOIN queries and query optimization principles. Thought 4: If I just say "use JOIN", they might not understand why or how to structure it properly. Thought 5: Need to show the performance impact (N+1 = 1000 orders * 100 items = 100,000 queries vs 1 JOIN query), explain query planning, and provide complete rewrite. Thought 6: Also opportunity to teach about ORM vs raw SQL trade-offs. ``` **Review Result:** [Enhanced escalation format with performance analysis, query optimization education, and complete JOIN example] **Status:** ESCALATED (enhanced format with ST analysis) --- ## Testing Checklist When testing the enhanced code reviewer: - [ ] Test simple issues (no ST, direct fix) - [ ] Test first rejection (standard escalation) - [ ] Test second rejection (ST triggered, enhanced format) - [ ] Test 3+ critical issues (ST triggered, complexity) - [ ] Test architectural issues (ST for trade-off analysis) - [ ] Verify enhanced format includes root cause analysis - [ ] Verify comprehensive examples in feedback - [ ] Verify educational context in complex cases --- ## Expected Behavior Summary | Scenario | Rejection Count | Issue Complexity | ST Triggered? | Format Used | |----------|----------------|------------------|---------------|-------------| | Simple formatting | 0 | Low | NO | Direct fix | | First security issue | 0 | Medium | NO | Standard escalation | | Second rejection | 2 | Medium | YES | Enhanced escalation | | 3+ critical issues | 0-1 | High | YES | Enhanced escalation | | Architectural trade-offs | 0-1 | High | YES | Enhanced escalation | | Complex interrelated | 0-1 | Very High | YES | Enhanced escalation | --- ## Success Metrics Enhanced code reviewer should: 1. **Reduce rejection cycles** - ST analysis breaks patterns faster 2. **Provide better education** - Comprehensive examples teach patterns 3. **Identify root causes** - Not just symptoms 4. **Make better architectural decisions** - Trade-off analysis with ST 5. **Save tokens overall** - Fewer rejections = less total token usage --- **Last Updated:** 2026-01-17 **Status:** Ready for Testing