Major additions: - Add CODING_GUIDELINES.md with "NO EMOJIS" rule - Create code-fixer agent for automated violation fixes - Add offline mode v2 hooks with local caching/queue - Add periodic context save with invisible Task Scheduler setup - Add agent coordination rules and database connection docs Infrastructure: - Update hooks: task-complete-v2, user-prompt-submit-v2 - Add periodic_save_check.py for auto-save every 5min - Add PowerShell scripts: setup_periodic_save.ps1, update_to_invisible.ps1 - Add sync-contexts script for queue synchronization Documentation: - OFFLINE_MODE.md, PERIODIC_SAVE_INVISIBLE_SETUP.md - Migration procedures and verification docs - Fix flashing window guide Updates: - Update agent configs (backup, code-review, coding, database, gitea, testing) - Update claude.md with coding guidelines reference - Update .gitignore for new cache/queue directories Status: Pre-automated-fixer baseline commit Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
120 lines
3.7 KiB
Bash
120 lines
3.7 KiB
Bash
#!/bin/bash
|
|
#
|
|
# Claude Code Hook: user-prompt-submit
|
|
# Runs BEFORE each user message is processed
|
|
# Injects relevant context from the database into the conversation
|
|
#
|
|
# Expected environment variables:
|
|
# CLAUDE_PROJECT_ID - UUID of the current project
|
|
# JWT_TOKEN - Authentication token for API
|
|
# CLAUDE_API_URL - API base URL (default: http://localhost:8000)
|
|
# CONTEXT_RECALL_ENABLED - Set to "false" to disable (default: true)
|
|
# MIN_RELEVANCE_SCORE - Minimum score for context (default: 5.0)
|
|
# MAX_CONTEXTS - Maximum number of contexts to retrieve (default: 10)
|
|
#
|
|
|
|
# Load configuration if exists
|
|
CONFIG_FILE="$(cd "$(dirname "${BASH_SOURCE[0]}")/.." && pwd)/context-recall-config.env"
|
|
if [ -f "$CONFIG_FILE" ]; then
|
|
source "$CONFIG_FILE"
|
|
fi
|
|
|
|
# Default values
|
|
API_URL="${CLAUDE_API_URL:-http://localhost:8000}"
|
|
ENABLED="${CONTEXT_RECALL_ENABLED:-true}"
|
|
MIN_SCORE="${MIN_RELEVANCE_SCORE:-5.0}"
|
|
MAX_ITEMS="${MAX_CONTEXTS:-10}"
|
|
|
|
# Exit early if disabled
|
|
if [ "$ENABLED" != "true" ]; then
|
|
exit 0
|
|
fi
|
|
|
|
# Detect project ID from git repo if not set
|
|
if [ -z "$CLAUDE_PROJECT_ID" ]; then
|
|
# Try to get from git config
|
|
PROJECT_ID=$(git config --local claude.projectid 2>/dev/null)
|
|
|
|
if [ -z "$PROJECT_ID" ]; then
|
|
# Try to derive from git remote URL
|
|
GIT_REMOTE=$(git config --get remote.origin.url 2>/dev/null)
|
|
if [ -n "$GIT_REMOTE" ]; then
|
|
# Hash the remote URL to create a consistent ID
|
|
PROJECT_ID=$(echo -n "$GIT_REMOTE" | md5sum | cut -d' ' -f1)
|
|
fi
|
|
fi
|
|
else
|
|
PROJECT_ID="$CLAUDE_PROJECT_ID"
|
|
fi
|
|
|
|
# Exit if no project ID available
|
|
if [ -z "$PROJECT_ID" ]; then
|
|
# Silent exit - no context available
|
|
exit 0
|
|
fi
|
|
|
|
# Exit if no JWT token
|
|
if [ -z "$JWT_TOKEN" ]; then
|
|
exit 0
|
|
fi
|
|
|
|
# Build API request URL
|
|
RECALL_URL="${API_URL}/api/conversation-contexts/recall"
|
|
QUERY_PARAMS="project_id=${PROJECT_ID}&limit=${MAX_ITEMS}&min_relevance_score=${MIN_SCORE}"
|
|
|
|
# Fetch context from API (with timeout and error handling)
|
|
CONTEXT_RESPONSE=$(curl -s --max-time 3 \
|
|
"${RECALL_URL}?${QUERY_PARAMS}" \
|
|
-H "Authorization: Bearer ${JWT_TOKEN}" \
|
|
-H "Accept: application/json" 2>/dev/null)
|
|
|
|
# Check if request was successful
|
|
if [ $? -ne 0 ] || [ -z "$CONTEXT_RESPONSE" ]; then
|
|
# Silent failure - API unavailable
|
|
exit 0
|
|
fi
|
|
|
|
# Parse and format context (expects JSON array of context objects)
|
|
# Example response: [{"title": "...", "dense_summary": "...", "relevance_score": 8.5}, ...]
|
|
CONTEXT_COUNT=$(echo "$CONTEXT_RESPONSE" | grep -o '"id"' | wc -l)
|
|
|
|
if [ "$CONTEXT_COUNT" -gt 0 ]; then
|
|
echo "<!-- Context Recall: Retrieved $CONTEXT_COUNT relevant context(s) -->"
|
|
echo ""
|
|
echo "## 📚 Previous Context"
|
|
echo ""
|
|
echo "The following context has been automatically recalled from previous sessions:"
|
|
echo ""
|
|
|
|
# Extract and format each context entry
|
|
# Note: This uses simple text parsing. For production, consider using jq if available.
|
|
echo "$CONTEXT_RESPONSE" | python3 -c "
|
|
import sys, json
|
|
try:
|
|
contexts = json.load(sys.stdin)
|
|
if isinstance(contexts, list):
|
|
for i, ctx in enumerate(contexts, 1):
|
|
title = ctx.get('title', 'Untitled')
|
|
summary = ctx.get('dense_summary', '')
|
|
score = ctx.get('relevance_score', 0)
|
|
ctx_type = ctx.get('context_type', 'unknown')
|
|
|
|
print(f'### {i}. {title} (Score: {score}/10)')
|
|
print(f'*Type: {ctx_type}*')
|
|
print()
|
|
print(summary)
|
|
print()
|
|
print('---')
|
|
print()
|
|
except:
|
|
pass
|
|
" 2>/dev/null
|
|
|
|
echo ""
|
|
echo "*This context was automatically injected to help maintain continuity across sessions.*"
|
|
echo ""
|
|
fi
|
|
|
|
# Exit successfully
|
|
exit 0
|